检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学工业装备结构分析国家重点实验室,大连116024
出 处:《计算力学学报》2014年第1期31-36,共6页Chinese Journal of Computational Mechanics
基 金:973国家重点基础研究计划(2010CB832704)资助项目
摘 要:常规单元的插值函数通常仅考虑单元的几何形状与节点位置,而忽略了反映物理问题关键特性的物性参数,从而降低了其数值分析的效果。相反,理性有限元法是取问题微分控制方程的多项式基本解作为单元内的插值函数,其所形成的刚度阵与问题的物性参数紧密相关,因此它避免了常规有限元法对物理问题和数学问题的割裂,可显著提高数值分析的稳定性和精度。本文利用空间各向异性问题的基本解,构造出满足分片实验要求的八节点理性块体单元。数值算例表明,本文给出的理性单元不仅具有较高的求解精度,而且具有良好的数值稳定性,尤其是对较为畸形的单元反应不敏感。For conventional finite element, only the geometry and node locations are considered in the in- terpolation functions ,while the physical parameters which reflect the key features of the physical prob- lems is ignored, so its numerical performance may not satisfied. In contrast, for rational finite element method, the fundamental solutions of the differential equations are taken as the interpolation function and so the resulting stiffness matrix is related closely to the physical parameters of the problem. Therefore, for rational finite element, the separation between the mathematical and physical problems in the conven- tional finite element method can be avoided, and so the stability and accuracy of numerical analysis can improve significantly. In this paper, an eight-node brick rational element, which satisfies the requirements of the patch test,is constructed using the fundamental solution of the 3D anisotropic problems. Numeri- cal examples show that the rational element gives numerical results with not only high accuracy, but also good numerical stability,especially it is insensitive for the ill-shaped meshes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3