检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津理工大学天津市复杂系统控制理论及应用重点实验室,天津300384
出 处:《计算机仿真》2014年第2期288-292,共5页Computer Simulation
基 金:国家自然基金(61172185);天津市高等学校科技发展基金项目(20100705)
摘 要:研究零件尺寸亚像素测量问题。目前存在的亚像素检测算法精度低、实时性差,不能实现零件图像边缘的精准定位。为提高检测速度、检测精度,提出一种基于Zernike正交矩的亚像素级边缘定位检测的改进算法。采用机器视觉技术获取零件的图像数据,首先利用数学形态法中的四邻域腐蚀法进行边缘点的像素级粗定位,然后利用Zernike正交矩算法对边缘点进行亚像素级重新定位,分析误差并进行误差补偿,以实现高精度的图像亚像素边缘检测。实验结果表明,改进算法能够快速有效完成亚像素级边缘检测。Study the problem of part size sub - pixel measurement. The precise positioning of the edge of the image of the part can not be achieved using the existing low accuracy and poor real - time algorithms. Start with the key factors that affect the mechanical parts from visual inspection applications - detection rate and accuracy, an improved algorithm was presented based on Zernike orthogonal moments sub - pixel edge location. Machine vision techniques have been introduced to capture dig ital image of parts. Firstly, the algorithm located pixel - level edge points for coarse positioning using four - neighborhood corrosion of the mathematical morphology method, then re - located the sub - pixel level edge points by means of Zernike orthogonal moments algorithm. Finally, the errors were analyzed and dealt with, and the sub - pixel level edge detection of the image was attained. The experimental results show that the algorithm can quickly and efficiently complete the sub - pixel edge detection.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104