EMD与ICA相结合的复杂转子系统早期故障诊断  被引量:5

Early Fault Diagnosis of Complex Rotor Systems by EMD-ICA

在线阅读下载全文

作  者:尚柏林[1] 谢紫龙[1] 程礼[1] 通旭东[1] 

机构地区:[1]空军工程大学航空航天工程学院,西安710038

出  处:《科学技术与工程》2014年第2期265-271,共7页Science Technology and Engineering

摘  要:为了提取复杂转子系统微弱故障信息,对其早期故障进行预知诊断,针对某型涡桨发动机的减速器传动机构接连发生的齿轮毂裂纹故障问题,通过布置多组加速度传感器对多组正常齿轮毂和预制早期裂纹故障的齿轮毂进行正常试车下的振动信号采集。采用EMD(empirical mode decomposition)方法把测试信号分解成多个IMF分量,选取合适IMF分量利用基于非高斯性极大的ICA(independent component analysis)固定点算法进行混合再分离,得到了信息较为独立的特征分量。通过对特征分量进行解调分析得到能清晰反应故障状态的调制信号信息。结果表明基于EMD与ICA相结合的特征信号分离提取技术加包络解调法能有效地识别复杂转子系统早期故障信息。In order to extract the weak fault information of complex rotor system, and then make predict and di-agnosis for early failure, aiming at the crack fault of gear hub which occurred repeatedly in reducers of one type of turboprop engines, several acceleration sensors on the engine for collecting the vibration signal in the state of both normal and prefabricated early fault gear hubs under engine test are arranged. First decompose the test signal into several IMF components using EMD method, then select appropriate IMF components and mixed-separate them using ICA method which based on maximum non-Gaussian and Fixed-point, doing this is got the independent fea-ture components. The modulated signal information could be got which can clear indicate the fault by doing demod-ulation of the independent feature components. The results shows that the characteristic signal separation and ex-traction technologies which based on combined EMD-ICA and envelope demodulation additional can effectively identify early fault information of complex rotor system.

关 键 词:转子系统 早期故障 EMD分解 非高斯性 ICA分离 解调分析 

分 类 号:V231.96[航空宇航科学与技术—航空宇航推进理论与工程] TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象