检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学雷达信号处理国家重点实验室,西安710071
出 处:《系统仿真学报》2014年第2期254-259,共6页Journal of System Simulation
基 金:国家自然科学基金(11176022);陕西省教育厅科学研究计划项目(12JK0524)
摘 要:由于超分辨率图像的重建是典型的不适定问题,因此常引入正则化约束来稳定求解。在正则化方法的基础上,提出了一种针对SAR图像不同区域自适应处理的正则SAR图像超分辨重建新算法。该算法根据图像的邻域一致性测度构造自适应平滑约束项,并定义自适应的p L范数对此项进行度量。同时,构造基于1L范数的梯度逼近范数项,将其加入正则化的重建过程中,进一步提高SAR图像的重建质量。实验结果表明,该算法不仅具有良好的稳健性,而且在较好地重建SAR图像细节信息的同时,有效地抑制了斑点噪声,明显改善了重建SAR图像的质量。The super resolution images reconstruction approach is an ill-posed problem, so regularization is often adopted to stabilize the inversion of this problem. Based on the framework of regularized super resolution (RSR) reconstruction approach, an adaptive edge-preserving RSR reconstruction algorithm for SAR images was proposed, which processed different regions of SAR images adaptively. In the adaptive super resolution reconstruction algorithm, an adaptive smoothness constraint term with adaptive Lp norm was introduced based on the neighborhood homogeneous measurement ~HM). Meanwhile, the image gradient error term with L~ norm was combined in the regularized super resolution reconstruction to further improve the quality of the reconstruction SAR image. The experimental results validate the effectiveness of the proposed algorithm and demonstrate that it has the advantage of preserving detailed components and suppressing speckled noise.
关 键 词:边缘保持 超分辨率 SAR图像 图像重建 自适应
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222