检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学物理学报(A辑)》2014年第1期9-15,共7页Acta Mathematica Scientia
基 金:国家自然科学基金(71271158)资助
摘 要:该文对Holger Sriulik^([1])给出的模型作了进一步的研究.证明在给定的技术水平下,描述模型的动力系统出现鞍结定分歧.当模型存在两个平衡点时,鞍点的稳定流形将y-k平面的第一像限分成两个区域,其左边为Malthus区域,该区域的所有轨道收敛于一个低水平的平衡点;其右边为非Malthus区域,该区域的轨道为正常的经济增长路径.经济可以通过提高技术水平或提高人均收入的"大冲击"方法逃离"Malthus贫困陷阱".In this paper, we make a further study of the model provided by Holger Sriulik[1]. It is proved that the dynamical system which describes the model has no nonzero equilibrium when ā 〉 O, one nonzero equilibrium when a = ā and two equilibria, one saddle and one node when a 〈 ā and ā - a is small enough. So the dynamical system undergoes a saddle-node bifurcation at a - ā. By phase portrait analysis, we obtain that the first quadrant of y-k plane is divided into two regions by the stable manifold of the saddle point when there exists two equilibria and the economy has a Malthusian region in which all growth paths converge to the low level equilibrium and a non-Malthusian region in which the economy has normal growth path. Therefore, the economy can escape the "Malthusian poverty trap" by promoting the technological growth rate or by "big-push" which promotes the per capita income.
关 键 词:分歧 相图分析 人口转变 多重增长路径 Malthus贫困陷阱
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90