具有人口转变经济增长模型中的分歧和多重增长路径  被引量:1

Bifurcation and Multiple Growth Paths in an Economic Growth Model with Demographic Transition

在线阅读下载全文

作  者:蔡东汉[1] 叶辉[1] 

机构地区:[1]武汉大学数学统计学院,武汉430072

出  处:《数学物理学报(A辑)》2014年第1期9-15,共7页Acta Mathematica Scientia

基  金:国家自然科学基金(71271158)资助

摘  要:该文对Holger Sriulik^([1])给出的模型作了进一步的研究.证明在给定的技术水平下,描述模型的动力系统出现鞍结定分歧.当模型存在两个平衡点时,鞍点的稳定流形将y-k平面的第一像限分成两个区域,其左边为Malthus区域,该区域的所有轨道收敛于一个低水平的平衡点;其右边为非Malthus区域,该区域的轨道为正常的经济增长路径.经济可以通过提高技术水平或提高人均收入的"大冲击"方法逃离"Malthus贫困陷阱".In this paper, we make a further study of the model provided by Holger Sriulik[1]. It is proved that the dynamical system which describes the model has no nonzero equilibrium when ā 〉 O, one nonzero equilibrium when a = ā and two equilibria, one saddle and one node when a 〈 ā and ā - a is small enough. So the dynamical system undergoes a saddle-node bifurcation at a - ā. By phase portrait analysis, we obtain that the first quadrant of y-k plane is divided into two regions by the stable manifold of the saddle point when there exists two equilibria and the economy has a Malthusian region in which all growth paths converge to the low level equilibrium and a non-Malthusian region in which the economy has normal growth path. Therefore, the economy can escape the "Malthusian poverty trap" by promoting the technological growth rate or by "big-push" which promotes the per capita income.

关 键 词:分歧 相图分析 人口转变 多重增长路径 Malthus贫困陷阱 

分 类 号:O192[理学—数学] O232[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象