基于模糊支持向量机的硫浮选工况识别  被引量:8

Performance recognition of sulfur flotation based on fuzzy support vector machine

在线阅读下载全文

作  者:何明芳[1] 阳春华[1] 王晓丽[1] 桂卫华[1] 

机构地区:[1]中南大学信息科学与工程学院,长沙410083

出  处:《中国有色金属学报》2013年第12期3478-3483,共6页The Chinese Journal of Nonferrous Metals

基  金:国家"十二五"科技支撑计划项目(2012BAF03B05);国家自然科学基金重点项目(61134006);国家杰出青年科学基金资助项目(61025015)

摘  要:针对硫浮选泡沫图像噪声大、特征重要度差异显著引起工况难以识别的问题,提出基于模糊支持向量机的硫浮选工况识别方法。通过融合样本模糊隶属度和特征信息增益,获取图像视觉特征的特征重要度;并结合特征重要度矩阵,改进模糊支持向量机的核函数,进而建立工况类别与图像特征之间的关系模型,实现硫浮选工况识别。采用模糊隶属度对噪声赋予较小的权值,并结合模糊隶属度来获取特征重要度矩阵,可以减小噪声样本的影响,以揭示图像特征重要度之间的差异,提高工况识别准确性。锌直接浸出冶炼硫浮选生产过程的实际测试数据验证了方法的有效性。Considering performance recognition problem caused by the high noise of froth images and the obvious difference of feature importance in sulfur flotation process,a performance recognition method for sulfur flotation process using fuzzy support vector machine was proposed. With the combination of fuzzy membership and feature information gain,the image feature importance was obtained,and the kernel function of fuzzy support vector machine was improved using the feature importance. Then,the model that reveals the relationship between performance and image feature was established to detect sulfur condition. As the fuzzy membership was used to define a small weight for the noise sample and acquire feature importance,which can reduce the effect of image noise points and reveal the difference of feature importance,the classification accuracy is effectively improved. The simulation results show the effectiveness by using actual running data from a sulfur flotation process of zinc direct leaching hydrometallurgy.

关 键 词:硫浮选 特征重要度 模糊支持向量机 工况识别 

分 类 号:TD923[矿业工程—选矿] TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象