适用于高维多类数据分类的并行非线性最小二乘法分类器  被引量:1

Parallel Nonlinear Least Squares for High Dimensional Multi-class Data Classification

在线阅读下载全文

作  者:赵奕林[1] 朱真峰[1] 周清雷[1] 

机构地区:[1]郑州大学信息工程学院,郑州450001

出  处:《小型微型计算机系统》2014年第3期579-583,共5页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61250007;U1204610)资助;国家"八六三"高技术研究发展计划重点项目(2009AA012201)资助;中国博士后科学基金项目(2011M501189)资助

摘  要:最小二乘法(LS)分类器是一种基础但有效的分类器,尤其适用于解决大规模数据分类问题.LS方法需要求逆矩阵,这使得LS方法在处理高维数据问题时效率低下.为此,提出基于LS的并行化非线性方法(PNLS).通过随机地划分数据维,PNLS能够并行地计算局部模型参数,经过迭代优化,形成最终的全局解.PNLS方法具有三个特点:1)局部线性但全局非线性;2)避免求解大矩阵的逆,适合处理高维数据;3)通过并行计算,能够提高学习效率.另外,理论分析证明了PNLS方法的收敛性.本文进一步提出一种随机版本的PNLS方法,它在每次迭代过程中随机分割数据维以优化PNLS的性能.实验结果表明,与最小二乘法相比,本文提出的方法可以获得更好的预测精度和运行效率.least squares( LS ) classifier is a basic but effective classifier, especially for solving large-scale data classification problems. LS method needs to invert the matrix whose size is determined by the dimensionality, which makes it inherently inefficient for dealing with high-dimensional data. In this paper, we propose a parallel nonlinear version of LS { PNLS ). Based on random dimensionality par- titioning, PNLS can obtain local model parameters in parallel. After an iterative optimization, PNI.~ forms the final global solution. At the same time, PNLS enjoys three properties: 1 ) PNLS is a locally linear but globally nonlinear method; 2) It can avoid inverting large matrix, which makes it suitable for high-dimensional data; and 3 ) It can calculate model parameters in parallel, which can improve learning efficiency. Besides, theoretical analysis proves the iterative PNLS method is convergent. In the paper, we also propose a ran- dom PNLS with randomly partitioned data in each iteration to optimize the performance of PNLS. Experimental results on text and im- age data demonstrate that the proposed methods can obtain better prediction accuracy and runtime efficiency than LS.

关 键 词:最小二乘法 并行 高维度 分类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象