检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖北文理学院数学与计算机科学学院,襄阳441053
出 处:《四川大学学报(自然科学版)》2014年第1期21-30,共10页Journal of Sichuan University(Natural Science Edition)
基 金:湖北省教育厅科学技术研究计划项目(D20112605;Q20122504)
摘 要:本文研究了一个带人工粘性的二维可压欧拉方程的解收敛于一维稀疏波的渐近行为.如果初值适当接近一个常数并且它们在x=±!的渐近值被选择,那么解收敛于一维稀疏波.由于不要求稀疏波的小强度,因此作者给出了二维可压欧拉方程强稀疏波的非线性稳定.证明方法利用了一维稀疏波的稳定性结果和L2能量方法.This paper is concerned with the asymptotic behavior toward one-dimensional rarefaction wave of the solution of two-dimensional compressible Euler equation with an artificial viscosity. The solution is proved to tend toward the one-dimensional rarefaction wave as t→ ∞, provided that the initial data are suitably close to a constant state and their asymptotic values at x =±∞ are chosen. Since it is not re- quired the strength of the rarefaction wave to be small, the result gives the nonlinear stability of strong rarefaction wave for the two-dimensional compressible Euler equation. The proof is given by the stability results of one-dimensional rarefaction wave and the elementary L2 energy method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171