检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]成都信息工程学院网络工程学院,成都610225
出 处:《四川理工学院学报(自然科学版)》2014年第1期41-44,共4页Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基 金:四川省科技支撑项目(2011GZ0195)
摘 要:由于云存储环境与云计算环境中不同,若直接将云计算环境中的任务调度算法移植到云存储环境中,必然会导致任务调度的效率下降。为解决此问题,提出了一种适用于云存储环境中的改进蚁群算法。改进蚁群算法能使云计算环境的任务调度算法更符合云存储的环境;同时,对于改进PSO算法在引入存在矩阵时,由于数据资源不存在而造成算法前期优化浪费引起效率低下的问题进行了有效解决。分析测试结果表明,提出的改进蚁群算法在云存储环境的任务调度算法在保障有效解的前提下能够拥有更快的收敛速度。Due to the different between the cloud storage environment and the cloud computing environment, directly transplanting task scheduling which used in cloud computing to the cloud storage environment will inevitably lead to a decline in the efficiency of task scheduling. To solve this problem, an improved ant colony algorithm which is applicable to cloud storage environment is proposed. This improved ant colony algorithm is more suitable for cloud storage environment. At the same time, there is no data resources when the improved PSO algorithm is introduced in matrix, so that a waste of early opti- mizing of the algorithm is produced, which causes a problem that the efficiency is very low, the problem is solved effectively. Analysis of test results shows that the improved ant colony algorithm propsed in the clord storage environment task scheduling algorithm has faster convergence rate under the premise to guarantee efficient solutions.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15