检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱喜华[1] 李颖晖[1] 李宁[1] 范炳奎[2]
机构地区:[1]空军工程大学航空航天工程学院 [2]中国人民解放军95291部队装备部
出 处:《通信学报》2014年第2期182-189,共8页Journal on Communications
基 金:国家自然科学基金资助项目(61074007);总装预研基金资助项目;陕西省自然科学基金资助项目(2012JM8016)~~
摘 要:提出了一种新的粒子群优化算法——基于群体早熟收敛程度和非线性周期振荡策略的自适应混沌粒子群优化算法。利用混沌的遍历特性初始化粒子的速度和位置,根据种群的早熟收敛程度和粒子的适应度值自适应地调整惯性权重;学习因子则采用非线性周期振荡策略,模拟鸟类觅食过程中交替出现的分散和重组现象。基准测试函数的仿真结果表明,所提出的算法不仅收敛速度快、寻优质量高,而且具有良好的稳定性。A novel particle swarm optimization algorithm was proposed, which was adaptive chaos particle swarm opti- mization algorithm based on swarm premature convergence degree and nonlinear periodic oscillating strategy. The er- godic of chaos was used for initializing the velocities and positions of the particles. The inertia weights were adjusted adaptively according to the swarm's premature convergence degree and the particles' fitnesses, and the nonlinear periodic oscillating strategy was used for the learning coefficients, which simulates the decentralization and regroup of the birds when they were foraging. The simulation results on benchmark functions show that the proposed algorithm not only has fast convergent rate and high quality of optimization, but also has good stability.
关 键 词:粒子群算法 早熟程度 非线性周期振荡策略 自适应 混沌
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222