检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南工业大学粮油食品学院,河南郑州450001
出 处:《河南工业大学学报(自然科学版)》2014年第1期26-29,共4页Journal of Henan University of Technology:Natural Science Edition
基 金:河南省重点科技攻关项目(1121023103795)
摘 要:采用近红外光谱技术(NIRS)建立花生蛋白质含量的测定模型,讨论了不同回归技术及光谱和数学处理方法对模型的影响,并对模型进行外部验证.得出最佳的建模参数为:标准正常化结合散射处理(SNV and Detrend)的光谱处理方法和"2,4,4,1"的数学处理方法,改进最小二乘法的回归技术.得到的定标方程的定标相关系数为0.926 9,定标标准偏差为0.228 1,交叉验证相关系数为0.911 7,交叉检验标准偏差平均值为0.311 9,经外部验证得到的相关系数为0.919 7.近红外光谱技术可以用于花生蛋白质含量的快速检测.We constructed a peanut protein content determination model by near-infrared spectroscopy (NIRS), discussed the influences of different regression methods, spectroscopy and mathematical treatment methods on the model, and conducted external validation of the model. The results showed that the optimum modeling parameters were as follows : a SNV and Detrend method as spectral treatment method, a "2,4,4,1" mathematical treatment method, and a modified PLS as regression method. A calibration equation was obtained, and the calibration correlation coefficient was 0.926 9, the calibration standard deviation was 0.228 1 ,the cross-validation correlation coefficient was 0.911 7, the average value of cross-validation standard deviation was 0.311 9, and the correlation coefficient obtained by external validation was 0.919 7. The results indicate that near-infrared spectroscopy can be used for rapid determination of peanut protein content.
分 类 号:TS201.2[轻工技术与工程—食品科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49