检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:季昀[1] 李同春[1] 李硕[1] 单彬彬[1] 赵开伟[1]
出 处:《中国农村水利水电》2014年第2期82-84,共3页China Rural Water and Hydropower
基 金:水利部公益性行业科研专项经费项目(201301058)
摘 要:计算重力坝结构可靠度时,功能函数往往是高度非线性且为隐式的,此时经典的计算方法,如JC法、MonteCarlo方法会由于计算量及计算时间的大量增加而不再适用。此时,应用神经网络方法是一种较好的改进方式,其中RBF网络具有收敛速度快,适于非线性拟合且可实现全局收敛的特点。探究了RBF网络在重力坝结构可靠度中的应用模式,并结合实例分析了其合理性。The performance function tends to be implicit or nonlinear in the evaluation of gravity dam reliability, making it difficult to apply to some classical methods, such as JC method and Monte-Carlo simulation etc. as they are supposed to be too time-consuming. One possible solution to this problem may be the introduction of artificial neural networks, among which RBF is characterized by faster convergence and better precision and can realize global convergence to some extent. In this paper, the application of RBF in gravity dam reliability is investigated, with some examples presented to convince that it's reasonable to put it into use.
分 类 号:TV642.3[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222