改进的自适应脊波网络的碳通量预测  被引量:2

Modified adaptive ridgelet network and its application in prediction of carbon flux

在线阅读下载全文

作  者:王楷[1] 薛月菊[1] 陈汉鸣[1] 黄晓琳[1] 孔德运[1] 陈瑶[1] 

机构地区:[1]华南农业大学南方农业机械与装备关键技术省部共建教育部重点实验室,广州510642

出  处:《计算机工程与应用》2014年第3期242-246,共5页Computer Engineering and Applications

基  金:国家自然科学基金(No.41001310);教育部留学回国人员科研启动基金(外教司留[2009]1001号)

摘  要:碳通量同生态因素之间具有复杂的非线性关系,可以通过生态因素预测碳通量。为提高网络的训练速度和预测精度,针对碳通量数据高维、多样本、非线性、超平面奇异的特点,提出了一种改进的自适应脊波网络预测模型,采用高斯牛顿法调整激励函数的参数,运用矩阵分块法和伪逆矩阵计算脊波网络的权值和阈值。通过实验,比较了改进自适应脊波网络、自适应脊波网络和小波网络的训练收敛速度、隐含层节点个数和预测精度。实验结果表明,提出的预测模型预测精度更高,网络结构更稀疏,训练收敛速度更快。Carbon flux can be predicted by various ecological factors, because there is a complex and non-linear relationship between them. To increase network training rate and prediction accuracy and according to high dimension, many samples, non-linear, hyperplane singularity characteristics of carbon flux data, a new prediction model based on modified adaptive ridgelet network is proposed. Parameters in activation function are adjusted by Gauss Newton method, and weights and threshold are calculated by matrix partitioned method and pseudo-inverse matrix. Indexes such as convergence rate, number of hidden layer nodes and prediction accuracy of modified adaptive ridgelet network, adaptive ridgelet network and wavelet network are compared. The experimental results show that prediction model proposed in this paper has higher prediction accuracy, sparser network structure and faster training convergence rate.

关 键 词:碳通量 预测 自适应 脊波网络 稀疏 超平面奇异特性 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] P409[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象