检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨理工大学测控技术与通信工程学院,黑龙江省哈尔滨市150080
出 处:《电力系统自动化》2014年第4期44-50,共7页Automation of Electric Power Systems
基 金:国家自然科学基金资助项目(61179024);黑龙江省教育厅科学研究基金资助项目(12521087);哈尔滨市科技创新人才研究资金资助项目(2009RFQXG075)~~
摘 要:针对复杂的低压配电网通信环境,提出一种基于蚁群粒子群融合的无先导卡尔曼滤波(UKF)算法的模型参数辨识方法。对于电力线多径信道传输模型,采用具有最小均方误差估计效果的UKF辨识算法。针对UKF算法通过试验调节难以取得最佳滤波效果的问题,提出基于蚁群粒子群算法优化UKF噪声矩阵的方法,同时引入蚁群算法将惯性权重离散化以提高粒子群算法的搜索效率,克服其容易发生早熟收敛的缺点。试验和仿真结果表明,采用该优化算法辨识电力线信道模型可克服参数的分散性,提高拟合精度并缩短辨识时间。In view of the complicated low voltage communication environment of distribution network,an unscented Kalman filter(UKF) algorithm is proposed based on ant colony optimization-particle swarm optimization (ACO-PSO) to identify multipath channel transmission model parameters.The UKF algorithm using the minimum mean square error is adopted to estimate the identification effect for the power line multipath channel transmission model.Considering the difficulty in obtaining the optimal filtering effect through test adjustment by the UKF algorithm,this paper proposes an ACO-PSO algorithm based method for optimizing the noise matrix of the UKF algorithm,while introducing the ant colony algorithm in discretizing the inertia weight parameters to improve the searching efficiency of the PSO algorithm and overcome the shortcomings of being prone to premature convergence.Test and simulation results show that identifying the power line channel model with this optimization algorithm can overcome the dispersion of model parameters,improve the fitting accuracy and shorten the identification time.
关 键 词:电力载波通信 多径传输模型 参数辨识 蚁群优化 粒子群优化 无先导卡尔曼滤波
分 类 号:TM73[电气工程—电力系统及自动化] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200