检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李靖平[1] LI Jing - ping (Liming Vocational University, Quanzhou Fujian 362000,China)
机构地区:[1]黎明职业大学信息与电子工程学院,福建泉州362000
出 处:《长春师范学院学报(自然科学版)》2014年第1期40-44,共5页Journal of Changchun Teachers College
基 金:福建省教育厅B类科技研究项目(JBl2487S);泉州市技术研究与开发项目高校协同创新科技项目(20122131);泉州市科技局科技资助项目(2008G16).
摘 要:将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用.对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析,进行人脸识别.基于Yale人脸数据库的实验显示,在相同训练样本和特征向量条件下,M-2DPCA比2DPCA算法具有更高的识别率.M-2DPCA充分利用了图像的协方差信息,在人脸识别方面具有较高的识别率和鲁棒性方面,对进一步研究人脸识别具有重要的意义.The block theory and two- dimensional principal component analysis (2DPCA) were combined, and the modular two- di- mensional principal component analysis (M -2DPCA) was studied in face recognition. The original image matrix was divided into modu- lar image matrixes, and the image covariance matrix was formed directly by using sub - image matrixes, and its eigenvectors were de- rived. The eigenvectors were used to extract and analyze image feature for face recognition. The experiments based on the Yale face data- base showed that it had a higher recognition rate of M -2DPCA than 2DPCA under the same training specimens and eigenvectors. The information of image covariance matrix was fully utilized in M - 2DPCA method, which had an admirable recognition rate and robustness on face recognition, and it was important to further research on face recognition.
关 键 词:二维主成分分析 分块二维主成分分析法 特征提取 人脸识别
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38