仓储害虫局部形态学特征提取方法研究  被引量:4

Extraction of Local Morphological Features of Stored-grain Insects

在线阅读下载全文

作  者:张红涛[1,2] 李芳[1] 胡玉霞[3] 张恒源[2] 

机构地区:[1]安阳职业技术学院机电工程系,河南安阳455008 [2]华北水利水电大学电力学院,河南郑州450011 [3]郑州大学电气工程学院,河南郑州450001

出  处:《河南农业科学》2014年第2期84-87,共4页Journal of Henan Agricultural Sciences

基  金:国家自然科学基金项目(31101085);河南省基础与前沿技术研究计划项目(122300410145);河南省高等学校青年骨干教师资助计划项目(2011GGJS-094);华北水利水电大学高层次人才科研启动项目(201118);安阳职业技术学院工程技术类科研项目(AZKYGC-2013A01)

摘  要:为进一步提高对仓储害虫自动识别的准确度及种类数量,提出一种普适有效的仓储害虫局部特征提取方法,即首先自动判别出图像中仓储害虫的头部和尾部,然后采用基于兴趣区间对偶点分析的方法提取特征。提取出仓储害虫的鞘翅等效长、尾部弧度等7个局部形态学特征,构建了优化的形态学特征空间,采用SAA-SVM分类器对15类常见仓储害虫分类的正确率达到94.8%,解决了仓储害虫分类识别中多种类精确识别的难题。A universal and effective method for extracting the local features of storage insects was proposed in order to improve the accuracy and the number of species to be recognized further. The method included two steps. Firstly, the head and the tail of the storage insects in the image were determined automatically,and then features were extracted based on the dual point analysis within interesting interval. Seven local morphological features were extracted including coleopteran equivalent length,tail radian of storage insects and so on,and the optimized morphological feature space was constructed. The insects were classified based on simulated annealing algorithm and support vector machine (SAA-SVM). The results showed that the recognition accuracy was 94.8% for the fifteen species of common storage insects. The precise identification problem of more species was solved in classification of stored-grain pests.

关 键 词:仓储害虫 形态学特征 特征提取 分类识别 

分 类 号:S433[农业科学—农业昆虫与害虫防治] TP391.41[农业科学—植物保护]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象