检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学电气与电子工程学院,河北保定071003
出 处:《电测与仪表》2014年第5期15-20,共6页Electrical Measurement & Instrumentation
基 金:中央高校基本科研业务费专项资金资助项目(13XS26)
摘 要:针对传统的局部放电模式分类器存在的不足,提出了一种基于统计特征参数与相关向量机(RVM)的变压器局部放电类型识别的新方法。首先针对4种变压器局部放电实验模型的二维图谱提取出表征图谱特征的16个统计参数,然后设计一对一RVM多分类模型,将统计参数作为输入向量送入RVM分类模型,实现放电类型识别。测试结果表明,RVM分类器具有较好的放电识别效果,与支持向量机(SVM)相比具有计算复杂度低、相关向量少、训练及测试时间短等优点,两者识别精度相当,均高于BPNN。To overcome the defect of traditional partial discharge pattern classifier, a novel method is proposed based on statistical parameters and RVM for partial discharge type recognition. 16 statistical parameters are extracted which represent partial discharge 2-dimension diagram. One against one multiple RVM classifier is designed. And then the extracted parameters are sent to RVM model for partial discharge type recognition. Experiment results demonstrate that RVM classifier can get good recognition effect. Compared with SVM, RVM has lower complexity, less relevance vec-tors, shorter training and testing time. The partial discharge type recognition accuracy of RVM and SVM is better than that of BPNN.
分 类 号:TM933[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.217