检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李琳[1] LI Lin
出 处:《电脑知识与技术》2014年第1期115-119,共5页Computer Knowledge and Technology
摘 要:增量式支持向量机学习算法是一种重要的在线学习方法。传统的单增量支持向量机学习算法使用一个数据样本更新支持向量机模型。在增加或删除的数据样本点较多时,这种模型更新模式耗时巨大,具体原因是每个被插入或删除的样本都要进行一次模型参数更新的判断。该文提出一种基于参数规划的多重增量式的支持向量机优化训练算法,使用该训练算法,多重的支持向量机的训练时间大为减少。在合成数据集及真实测试数据集上的实验结果显示,该文提出的方法可以大大降低多重支持向量机训练算法的计算复杂度并提高分类器的精度。Incremental Support Vector Machines (SVM) is an important online learning method. The conventional training methods utilizes a single training data to update parameters of the SVM model. When there are many training samples that need-ed to be added or removed from the training set, this kind of learning manner is time consuming because each training sample is trained against the model. In this paper, we propose a parameter programming based learning approach to reduce the training time when multiple samples are added into or removed from the learning model. The performance of the proposed algorithm is evaluated in two scenarios:learning with limited resources and active learning. Experimental results indicate that the proposed ap-proach can reduce online SVM training time greatly.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28