Rough singular integrals associated with surfaces of Van der Corput type  被引量:2

Rough singular integrals associated with surfaces of Van der Corput type

在线阅读下载全文

作  者:LIU Feng WU Huo-xiong 

机构地区:[1]School of Mathematical Sciences,Xiamen University

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2014年第1期86-100,共15页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China(11071200,11371295)

摘  要:In this paper, the authors establish the LV-mapping properties for a class of singular integrals along surfaces in Rn of the form {Ф(lul)u' : u ε ]t^n} as well as the related maimal operators provided that the function Ф satisfies certain oscillatory integral estimates of Van der Corput type, and the integral kernels are given by the radial function h E ε△γ(R+) for γ 〉 1 and the sphere function ΩεFβ(S^n-1) for someβ 〉 0 which is distinct from HI(Sn-1).In this paper, the authors establish the LV-mapping properties for a class of singular integrals along surfaces in Rn of the form {Ф(lul)u' : u ε ]t^n} as well as the related maimal operators provided that the function Ф satisfies certain oscillatory integral estimates of Van der Corput type, and the integral kernels are given by the radial function h E ε△γ(R+) for γ 〉 1 and the sphere function ΩεFβ(S^n-1) for someβ 〉 0 which is distinct from HI(Sn-1).

关 键 词:42B20 42B25 42B30 Singular integrals surfaces of Van der Corput type maximal operators Littlewood-Paley theory  Fourier transform estimates 

分 类 号:O172.2[理学—数学] P618.130.2[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象