检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘春辉[1]
机构地区:[1]赤峰学院数学与统计学院,内蒙古赤峰024001
出 处:《高校应用数学学报(A辑)》2014年第1期115-126,共12页Applied Mathematics A Journal of Chinese Universities(Ser.A)
基 金:国家自然科学基金(10371106;60774073)
摘 要:运用模糊集及拓扑学的方法和原理对格蕴涵代数的LI-理想概念作进一步研究.首先,在格蕴涵代数中引入素模糊LI-理想的概念并讨论其性质特征及其与LI-理想的关系,建立了格蕴涵代数的素模糊LI-理想定理.其次,在格蕴涵代数L的全体素模糊LI-理想构成的集合PFLI(L)上构造了一个拓扑T,从而得拓扑空间(PFLI(L),T),称之为L的素模糊LI-理想谱空间,记为P F-Spec(L).考察了P FSpec(L)的若干拓扑性质.最后,在格蕴涵代数L的全体素LI-理想之集PLI(L)上定义了LI-拓扑TLI,证明了在一个格H蕴涵代数中拓扑空间(PLI(L),TLI)同胚于P FSpec(L)的一个Hausdor?子空间的结论.The aim of this paper is to further study the concept of LI-ideals in lattice implication algebras by using the method and principle of fuzzy sets and topology. Firstly, the notion prime fuzzy LI-ideals in lattice implication algebras is introduced and their properties are studied. And the prime fuzzy LI-ideals theorem of lattice implication algebras is established. Secondly, a topology T is constructed on the set of all prime fuzzy LI-ideals P FLI (L) in an lattice implication algebra L, then a topological space (PFLI(L), T ) is obtaind, be called prime fuzzy LI-ideals spectrum space of L, and denoted by P F-Spec(L). Some topological properties of P F-Spec(L) are discussed. Finally, the LI-topology is defined on the set of all prime LI-ideals PLI (L) of L. It is proved that topological space (PLI (L), TLI ) homeomorphic with an Hausdorff subspace of P F-Spec(L) in a lattice H implication algebra.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30