检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]轻工过程先进控制教育部重点实验室(江南大学),江苏无锡214122
出 处:《光电工程》2014年第3期43-48,共6页Opto-Electronic Engineering
基 金:国家自然科学基金(60574051);江苏省产学研联合创新资金-前瞻性联合研究项目(BY2012067)
摘 要:针对智能视频监控的需求,提出一种无监督学习的异常行为检测方法。首先,采用混合高斯模型建模提取出运动目标,对运动区域进行标记;然后提取运动区域内的光流信息,将其归一化成特征矩阵,并建立实时更新的特征矩阵观测序列;最后利用二维主成分分析(2DPCA)的重构原理对观测序列进行分析,根据重构特征矩阵与原特征矩阵的能量比来判断是否存在异常行为。基于不同数据库下的视频序列实验结果验证了所提方法的有效性。In order to meet the needs of intelligent video surveillance, an unsupervised abnormal detecting algorithm was proposed. Firstly, model of mixture of Gaussians was used to extract the motion area, and the motion area was labeled. Then, observation sequence updated in real-time of feature matrix was established by the optical flow features obtained from labeled area which was normalized to the feature matrix. Finally, applying reconstruction works of two-dimensional principal component analysis on the sequence, abnormal behavior can be detected according to the energy ratio between the recovered feature matrix and original feature matrix. Experiments were conducted on various video datasets, which shows the effectiveness of the proposed method.
关 键 词:异常行为检测 光流特征 二维主成分分析 无监督学习
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171