检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华侨大学数学科学学院,泉州362021 [2]武汉大学数学与统计学院,武汉430072
出 处:《系统工程理论与实践》2014年第3期769-776,共8页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(11172215;61374173);中央高校基本科研业务费专项资金(11QZR17)
摘 要:本文针对一个新发现的单参数混沌系统作为节点动力学的动力网络,在给定某一内连矩阵情况下,研究了随节点动力学参数的连续变化,复杂动力网络同步化区域的演化与切换.我们把这种网络同步化区域随节点动力学参数发生变化的现象称为网络同步化区域的分岔或转迁.结果发现,对于某些内连矩阵,同步化区域不产生分岔现象,表明网络同步状态的稳定性不会因节点动力学参数的变化而发生改变;而对于某些内连矩阵,随节点动力学参数的逐渐增大,同步化区域主要出现了下面几种分岔或转迁模式:(1)无界-空集型的,(2)空集-有界-无界-有界-无界型的,(3)空集-无界-空集-无界-空集-无界型的,(4)空集-有界-无界-有界界-无界型的.在这些分岔模式中,同步化区域随动力学参数的增大最后大都演化成无界型的,与统一混沌系统为节点动力学的网络的同步化区域的分岔模式有着显著差异.这些现象表明:同一类型的节点动力学,不同的内连矩阵,矩阵网络同步化区域的分岔模式是不一样的;同一内连矩阵,不同类型的节点动力学,网络的同步区域的分岔模式也存在很多差异;不同的分岔模式,网络同步状态的稳定性也是不一样,它势必影响网络的同步能力.For the network with a newly discovered one-parameter chaotic system as its node dynam-ics, under some a fixed inner-linking matrix, the paper investigates the evolution and switching of syn-chronized region in complex dynamical networks with kinetic parameters in nodes dynamics, which is called as bifurcation or transition of networks synchronized regions. Investigations reveal that for some inner-linking matrices, there are no bifurcation phenomena of synchronized region, implying the stabil- ity of the network synchronous state can not be altered by varying dynamic parameter; While for some inner-linking matrices, the bifurcation emerges, and there are several mainly bifurcation patterns as fol- lows: (1) unbounded-empty type, (2) empty-bounded-unbounded-bounded-unbounded type, (3) empty-unbounded-empty-unbound-empty-unbounded type, (4) empty-bounded-unbounded-bounded-unbounded type. Among these bifurcation patterns, with the increasing of dynamic parameter, synchronized region mostly ultimately evolves into the unbounded type except for the first type of pattern. There exists a significant difference between these patterns and those of network synchronized region with the same inner-linking matrix and the unified chaotic system as node dynamics. These indicate that for the same type of node dynamics, different inner-linking matrices can result in different bifurcation patterns of syn- chronized region; for an inner-linking matrix, different types of node dynamics can result in significant difference in bifurcation patterns of synchronized region; different bifurcation patterns can also result in different stability of network synchronous state which should affect the synchronizability of the networks.
分 类 号:O23[理学—运筹学与控制论] N941[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.137.236