检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于慧[1] 孙宝盛[1] 李亚楠[1] 张燕[1] 齐庚申[1]
机构地区:[1]天津大学环境科学与工程学院,天津300072
出 处:《中国环境科学》2014年第3期810-816,共7页China Environmental Science
基 金:天津市自然科学基金重点资助项目(07JCZDJC02100)
摘 要:灰色 GM(1,1)模型在水质预测中得到了较为广泛的运用,但其存在灰色偏差与抗干扰能力弱的局限性,针对这一问题,将马尔科夫链理论与模糊集合理论引入灰色GM(1,1)预测模型,并应用该模型对海河三岔口断面的DO、CODMn和NH3-N 3项指标2012-2016年的浓度变化趋势进行预测.结果表明,2004-2016年,DO及NH3-N浓度大致呈上升趋势,预计2016年分别可达9.15,1.47mg/L;CODMn浓度呈下降趋势,预计2016年可达3.91mg/L.以2012年的数据做验证,灰色模糊马尔科夫链模型的预测精度最高,可作为科学的水质预测方法.The GM(1,1) model has been widely used in the prediction of water quality. But it had the disadvantages of grey bias and weak anti-jamming capability. To solve this problem, the markov chain theory and fuzzy classification were introduced into the grey forecasting model and a new method named the Grey-Fuzzy-Markov Chain Model was proposed. In this paper, the tendency changes of DO,CODMn and NH3-N’s concentration were predicted in Haihe River from 2012 to 2016. The results showed that from 2004 to 2016 the concentration of DO and NH3-N would increase to 9.15 and 1.47mg/L respectively in 2016. Meanwhile the CODMn would decrease to 3.91mg/L in 2016. The concentration of DO,CODMn and NH3-N in 2012 were forecasted to check the precision of this model. The precision of the Grey-Fuzzy-Markov model was better than the GM(1,1) model and it would be a scientific method for the prediction of water quality.
分 类 号:X824[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.186