检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家海洋局珠海海洋环境监测中心站,广东珠海519015
出 处:《绿色科技》2014年第3期75-78,共4页Journal of Green Science and Technology
摘 要:探讨了两种水质综合评价方法:改进的灰色聚类法和人工神经网络法。通过采用增加训练样本和黄金分割的隐含层节点优化算法建立了人工神经网络模型,将两种水质综合评价方法进行了比较,结果表明:改进的灰色聚类法计算量较大,主观性较强,评价结果稳定。BP人工神经网络进行水质综合评价具有客观性,但网络训练较为繁琐,通过插值生成训练样本,极大地增强了网络的稳定性。但扩充后的训练样本,不能代表复杂的水质实况,使评价结果受到一定影响。This article discusses two kinds ofwater comprehensiveevaluation methods:the modifiedgray--clustering law and the artificial neural network. The artificial neural network model is created through increasing the number of training samples and optimization algorithm of golden section hidden layer node. Comparing the two kinds of water comprehensive evaluation methods, the results show that the modified grey--clustering method is rather stable and subjective,but its calculation burden is too heavy;the artificial neural net work is objective and more stable by interpolating, while the network training is tedious and the expanded training sample can not representscomplex water quality,so the assessment result will be influenced.
分 类 号:X703[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.9