Γ-inverses of Bounded Linear Operators  

Γ-inverses of Bounded Linear Operators

在线阅读下载全文

作  者:Xiao Ming XU Hong Ke DU Xiao Chun FANG 

机构地区:[1]School of Science,Shanghai Institute of Technology [2]College of Mathematics and Information Science,Shaanxi Normal University [3]Department of Mathematics,Tongji University

出  处:《Acta Mathematica Sinica,English Series》2014年第4期675-680,共6页数学学报(英文版)

基  金:supported by Research Foundation of Shanghai Institute of Technology for Talented Scholars(Grant No.1020K126021-YJ2012-21);Special Foundation for Excellent Young College and University Teachers(Grant No.405ZK12YQ21-ZZyyy12021);supported by National Natural Science Foundation of China(Grant No.11171197);supported by National Natural Science Foundation of China(Grant No.11071188)

摘  要:Let B(Н) be the algebra of all the bounded linear operators on a Hilbert space Н. For A, P and Q in B(Н), if there exists an operator X ∈ B(Н) such that APXQA = A, XQAPX = X, (QAPX)^* = QAPX and (XQAP)^* = XQAP, then X is said to be the F-inverse of A associated with P and Q, and denoted by A^+P,Q. In this note, we present some necessary and sufficient conditions for which A^+P,Q exists, and give an explicit representation of A^+PQ (if A^+P,Q exists).Let B(Н) be the algebra of all the bounded linear operators on a Hilbert space Н. For A, P and Q in B(Н), if there exists an operator X ∈ B(Н) such that APXQA = A, XQAPX = X, (QAPX)^* = QAPX and (XQAP)^* = XQAP, then X is said to be the F-inverse of A associated with P and Q, and denoted by A^+P,Q. In this note, we present some necessary and sufficient conditions for which A^+P,Q exists, and give an explicit representation of A^+PQ (if A^+P,Q exists).

关 键 词:Generalized inverse F-inverse Moore-Penrose inverse 

分 类 号:O177[理学—数学] O177.1[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象