检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王祎璠 姜志国[1,2] 史骏[1,2] 张浩鹏[1,2]
机构地区:[1]北京航空航天大学宇航学院图像处理中心,北京100191 [2]数字媒体北京市重点实验室,北京100191
出 处:《中国图象图形学报》2014年第3期393-400,共8页Journal of Image and Graphics
基 金:国家自然科学基金项目(61071137;61071138;61027004);国家重点基础研究发展计划(973)基金项目(2010CB327900)
摘 要:目的为解决传统的基于光照模型的高光修复算法无法很好地对高光区域存在饱和现象的单幅图像进行处理这一问题,提出一种显著性检测指导的高光区域修复算法。方法首先在亮度空间应用显著性模型,实现高光区域的自动检测和标记,之后运用改进的Exemplar-Based算法,综合利用图像的邻域和边缘信息,对标记的高光区域进行自适应修复,去除图像中的高光。结果分别对仿真及自然场景下的高光图像进行测试,实验结果表明,与原修复算法和传统高光去除算法相比,所提算法的修复效果更符合人眼视觉、修复后的图像质量更好。结论本文算法与Exemplar-Based算法及Tan方法相比,对高光区域存在饱和现象的单幅图像有较好的修复效果,并且有效地克服了传统高光去除算法受光照模型限制的缺点。Objective In order to deal with that most traditional highlight removal algorithms based on an illumination model fail to perform well on those images which have saturated pixels, this paper presents an inpainting algorithm guided by sali- ency detection. Method First, we apply the saliency model to the YUV space to detect and mark the highlight areas auto- matically. Then, we inpaint the highlight areas marked by the saliency model with the modified self-adaptive Exemplar- Based algorithm. Result We test on natural scene and emulational images, experimental results demonstrate that compared with the classic image inpainting and highlight removal algorithms, the results of the proposed method are more nature and have better image quality. Conclusion Compared with Exemplar-based and Tan algorithms, the proposed method performs better on dealing with a single image in which the highlight areas are saturated and is not limited by the illumination model.
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.142.93