改进电路模拟法的应用——同构混合开关拓扑辨识  被引量:1

Application of Optimized Circuit Simulation——Identification of Isomorphic Hybrid Switching

在线阅读下载全文

作  者:商慧亮[1] 刘洋[1] 柳志栋 董文杰 李锋[1] 

机构地区:[1]复旦大学电子工程系,上海200433 [2]东方电子有限公司,山东烟台264000

出  处:《应用科学学报》2014年第2期199-208,共10页Journal of Applied Sciences

基  金:国家自然科学基金(No.61301028);上海市自然科学基金(No.13ZR1402900);教育部博士点基金(No.20120071120016)资助

摘  要:提出了一种基于已有图同构判定算法——电路模拟法的改进方法,并将其应用到同构混合开关拓扑的辨识中.首先介绍混合开关拓扑的数学描述方法,给出混合开关拓扑的邻接矩阵表示及其相应的含权无向图表示,由此将同构混合开关拓扑的辨识问题转换为与其对应的含权无向图的同构判定问题,继而采用所提出的改进电路模拟法加以判定.在同样环境下对改进的电路模拟法及另一种混合开关拓扑同构判定方法——特征值判定法进行测试比对,测试结果表明该方法在处理同构混合开关拓扑辨识问题上是有效的,并且在判定速度和节点匹配能力上有较大的优势.This paper presents a new method for graph isomorphism identification and applies it to the identification of isomorphic hybrid switching topology. A mathematical model of hybrid switching topology is first introduced. The adjacency matrix and undirected-weighted graph description of the hybrid switching topology axe presented according to the mathematical model. In this case, the problem of identifying isomorphic hybrid switching topology is transformed into isomorphism determination of the corresponding undirected- weighted graphs. An optimized version of the circuit simulation method previously presented by the authors is proposed to solve the graph isomorphism determination problem. With a small modification, the optimized circuit simulation method can solve the problem of graph isomorphism determination more efficiently. Tests of the proposed method and another method called the eigenvalue algorithm are applied in the identification of isomorphic hybrid switching topology. The results show that the optimized circuit simulation method is valid and has advantages in both identification efficiency and ability of matching corresponding vertices of the isomorphic hybrid switching topology.

关 键 词:开关拓扑 同构 电路模拟法 特征值法 

分 类 号:TN711.6[电子电信—电路与系统] TM13[电气工程—电工理论与新技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象