Low on-resistance high-voltage lateral double-diffused metal oxide semiconductor with a buried improved super-junction layer  被引量:1

Low on-resistance high-voltage lateral double-diffused metal oxide semiconductor with a buried improved super-junction layer

在线阅读下载全文

作  者:伍伟 张波 罗小蓉 方健 李肇基 

机构地区:[1]State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China

出  处:《Chinese Physics B》2014年第3期625-629,共5页中国物理B(英文版)

基  金:Project supported by the National Science and Technology Project of the Ministry of Science and Technology of China(Grant No.2010ZX02201);the National Natural Science Foundation of China(Grant No.61176069);the National Defense Pre-Research of China(Grant No.51308020304)

摘  要:A novel low specific on-resistance (Ron,sp) lateral double-diffused metal oxide semiconductor (LDMOS) with a buried improved super-junction (BISJ) layer is proposed. A super-junction layer is buried in the drift region and the P pillar is split into two parts with different doping concentrations. Firstly, the buried super-junction layer causes the multiple-direction assisted depletion effect. The drift region doping concentration of the BISJ LDMOS is therefore much higher than that of the conventional LDMOS. Secondly, the buried super-junction layer provides a bulk low on-resistance path. Both of them reduce Ron,sp greatly. Thirdly, the electric field modulation effect of the new electric field peak introduced by the step doped P pillar improves the breakdown voltage (BV). The BISJ LDMOS exhibits a BV of 300 V and Ron,sp of 8.08 mΩ·cm2 which increases BV by 35% and reduces Ron,sp by 60% compared with those of a conventional LDMOS with a drift length of 15 μm, respectively.A novel low specific on-resistance (Ron,sp) lateral double-diffused metal oxide semiconductor (LDMOS) with a buried improved super-junction (BISJ) layer is proposed. A super-junction layer is buried in the drift region and the P pillar is split into two parts with different doping concentrations. Firstly, the buried super-junction layer causes the multiple-direction assisted depletion effect. The drift region doping concentration of the BISJ LDMOS is therefore much higher than that of the conventional LDMOS. Secondly, the buried super-junction layer provides a bulk low on-resistance path. Both of them reduce Ron,sp greatly. Thirdly, the electric field modulation effect of the new electric field peak introduced by the step doped P pillar improves the breakdown voltage (BV). The BISJ LDMOS exhibits a BV of 300 V and Ron,sp of 8.08 mΩ·cm2 which increases BV by 35% and reduces Ron,sp by 60% compared with those of a conventional LDMOS with a drift length of 15 μm, respectively.

关 键 词:multiple-direction assisted depletion effect breakdown voltage (BV) electric field modulation lateral double-diffusion MOSFET (LDMOS) 

分 类 号:O471[理学—半导体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象