检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学计算机科学与工程学院,南京210094
出 处:《电子与信息学报》2014年第4期882-887,共6页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61272220);江苏省自然科学基金(BK2012399)资助课题
摘 要:该文提出一种鲁棒的基于对比度的局部特征描述方法,即独立元素对比度直方图(Independent Elementary Contrast Histogram,IECH)描述子。首先计算特征区域内各像素与被随机采样像素间的对比度值。然后,在极坐标下以特征主方向为基准,将局部特征区域分割成32个子区域,分别统计2维正负对比度直方图。最后,对统计结果进行归一化处理,产生64维的IECH特征描述向量。实验结果表明,该方法在保持与SIFT相当的匹配性能的同时,具有更快的特征生成速度与更低的特征维数。相比于具有相同时间复杂度与特征维数的对比度上下文直方图(CCH)方法,该方法描述子的性能有了明显的提高,更适合在实时应用中使用。A robust local feature description method based on image contrast is proposed, which is called Independent Elementary Contrast Histogram (IECH) descriptor. First, the contrast value between each pixel in the local region and the pixel which is chose by random sampling is computed. Second, the local region is divided into 32 sub-regions starting from the dominate orientation in the log-polar coordinate system, and a 2-bins contrast histogram is calculated in every sub-region. Finally, the histogram vector is normalized to create the 64-dimensional IECH descriptor. By comprehensive comparison with other descriptors, the results indicate that the proposed descriptor is competitive with the performance of SIFT descriptor, while getting higher descriptor building speed and lower descriptor dimension. Moreover, the proposed method possesses a superior performance compared to the Contrast Context Histogram (CCH) descriptor with the same time complexity and descriptor dimension, and it is more suitable for real-time applications.
关 键 词:图像检索 图像匹配 局部特征描述子 对比度上下文直方图
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145