检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖北文理学院数学与计算机学院,湖北襄阳441053 [2]襄阳五中,湖北襄阳441021
出 处:《重庆工商大学学报(自然科学版)》2014年第3期1-5,共5页Journal of Chongqing Technology and Business University:Natural Science Edition
基 金:国家自然科学基金项目(11101347);湖北省教育厅科研计划项目(Q20122504)
摘 要:主要考虑一类p拉普拉斯方程的正解,由于该方程所对应泛函不能定义在常用空间W1,p(RN)上,并且W1,p(RN)→嵌入Ls(RN)(2<q<2*)是非紧的,这也导致了很难直接求解;因此首先利用变量变换使得对应泛函能够定义在W1,p(RN)上,另外Strauss已经证明了W1,p(RN)的径向空间W1,p r(RN)→嵌入Ls(RN)(2<q<2*)是紧的,从而利用山路引理和极值原理证明所研究方程存在正解.This paper mainly considers the positive solutions to a class of p-Laplacian equations. Because the functional corresponding to the equations can not be defined in common space W^1,p(RN) and W^1,p( R^N) embedding L^s( R^N) (2〈q〈2* ) is not compact, which leads to difficult to directly get solutions to the equations, as a result, variable transformation is firstly used to make the corresponding functional defined in W^1,p( R^N), in addition, Strauss has proved that W^1,p( R^N) so that mountain pass lemma and solutions. embedding L^s(RN) (2〈q〈2*) extremum principle are is compact, where W^1,p(R^N) is the radial space, to prove that the studied equations have positive
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42