电力系统环保经济负荷分配的模糊自修正粒子群算法  被引量:10

Fuzzy self-correction particle swarm optimization of environmental economic load distribution in power system

在线阅读下载全文

作  者:李绍金[1] 周任军[1] 周胜瑜[1] 康信文 刘乐平[1] 王蛟[1] 

机构地区:[1]智能电网运行与控制湖南省重点实验室(长沙理工大学),湖南长沙410114

出  处:《电力系统保护与控制》2014年第8期15-21,共7页Power System Protection and Control

基  金:国家自然科学基金(51277016);湖南省高校创新平台开放基金项目(12K074);湖南省重点学科建设项目资助~~

摘  要:针对标准粒子群算法易陷入局部最优、收敛过早的缺陷,提出了一种模糊自修正粒子群算法。通过利用模糊推理机制建立了粒子适应度值隶属度函数,在每次寻优过程中,使得各粒子根据自身当前适应度隶属度函数值来修正惯性权重的取值,而不是把惯性权重作为全局变量,对同一代粒子使用相同的惯性权重;这充分考虑了各粒子自身的性能,可以进一步改善早熟的缺陷,增强全局搜索能力,从而可以获取更好的目标值。将该算法用于求解电力系统经济负荷分配问题,兼顾考虑了燃料成本和环境成本;在求解此问题时,为了更精确地处理功率平衡约束,根据寻优过程中等式约束偏差量的大小不断调整罚系数取值,并以此建立相应的罚函数。算例结果表明,模糊自修正粒子群算法对比标准粒子群算法有较强的全局搜索能力,有更可靠的优化计算结果,进而体现了该方法的有效性和优越性。According to the shortage that particle swarm optimization (PSO) algorithm easily falls into local optimum and premature convergence, a fuzzy self-correction particle swarm optimization algorithm is proposed. By using the fuzzy reasoning mechanism, a particle fitness membership function is established, which makes the particles base on their current fitness membership function values to modify the value of inertia weight in the process of optimization, instead of seeing the inertia weight as a global variable, then a generation of particles use the same inertia weight. This optimization fully considers the features of the particle itself, which can further improve the defect of prematurity, enhance the global search ability and get a better target value. The algorithm is used to solve the economic load distribution problems in power system, both considering fuel cost and environmental cost. In solving this problem, to exactly deal with power balance constraints, it uses the size of the deviation value of equality constraint in the optimization process to constantly adjust the value of penalty coefficients, and then establishes corresponding penalty function. Numerical example results show that the proposed algorithm has strong global search ability and more reliable optimization calculation results compared to the standard particle swarm algorithm, which shows the effectiveness and superiority of this method.

关 键 词:粒子群算法 模糊推理机制 模糊自修正 环保经济负荷分配 适应度值隶属度函数 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象