检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学》2014年第4期297-301,共5页Computer Science
基 金:国家科技支撑计划课题(2012BAD10B01);浙江省自然科学基金(LQ12F03011)资助
摘 要:针对非线性系统在线学习的效率问题,提出了一种基于QR分解的增量式核判别分析法。该算法充分利用基于QR分解的核判别分析法的先降维后提取特征的思想,将核空间映射到低维空间进行计算,减少了构造核矩阵的计算量,降低了核矩阵的存储空间。同时引入增量计算的思想,有效地解决了在线学习中冗余计算的问题。在TE过程数据和ORL人脸库上的仿真实验证明了该算法在特征提取上的有效性,其相比批量式算法有更高的效率优势。To improve the online learning efficiency of nonlinear system,an incremental kernel decomposition analysis method via QR decomposition was developed.This algorithm maps the kernel space to a lower dimension space before performing feature decomposition to reduce the amount of calculation and the storage space of the kernel matrix.Then this algorithm solves the problem of redundant computation by combining the idea of incremental computation.The experiments on TE process and ORL data set show this algorithm is effective on feature decomposition as well as more efficient than the batch one.
关 键 词:非线性系统 在线学习 QR分解 增量计算 特征降维
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.86.4