检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, COMSATS Institute of Information Technology Abbottabad, Pakistan
出 处:《Algebra Colloquium》2014年第2期347-353,共7页代数集刊(英文版)
摘 要:Let S be an inverse AG-groupoid (Abel-Grassmann groupoid) and define a relation γ on S by aγb if and only if there exist some positive integers n and m such that bm∈ (Sa)S and an∈ (Sb)S. We prove that S/γ is a maximal semilattice homomorphic image of S. Thus, every inverse AG-groupoid S is uniquely expressible as a semilattice Y of some Archimedean inverse AG-groupoids Sα (α∈ Y). Our result can be regarded as an analogy of the well known Clifford theorem in semigroups for AG-groupoids.Let S be an inverse AG-groupoid (Abel-Grassmann groupoid) and define a relation γ on S by aγb if and only if there exist some positive integers n and m such that bm∈ (Sa)S and an∈ (Sb)S. We prove that S/γ is a maximal semilattice homomorphic image of S. Thus, every inverse AG-groupoid S is uniquely expressible as a semilattice Y of some Archimedean inverse AG-groupoids Sα (α∈ Y). Our result can be regarded as an analogy of the well known Clifford theorem in semigroups for AG-groupoids.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229