检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国人民解放军91913部队 [2]西安电子科大学
出 处:《火控雷达技术》2014年第1期56-59,68,共5页Fire Control Radar Technology
基 金:国家自然基金(61271296);博士后基金(2012M521747)
摘 要:针对基于统计的QAM信号识别算法,忽略了信号的局部特性,导致算法性能不好等问题,提出了一种基于流形学习的16QAM、32QAM、64QAM信号识别算法。该算法利用高阶累计量特征描述信号,在此基础上利用邻接图描述特征的内在几何属性,较好地刻画了数据的相似性几何属性,最后利用最近邻分类器算法进行分类。实验结果表明,该算法具有好的识别率,尤其在低信噪比下,算法性能比较突出。Quadrature amplitude modulation (QAM) signal recognition algorithm based on statistics ignores the lo- eal eharacteristies of the signals, which results in the degradation of the performance. To address this issue, a new manifold based algorithm is proposed for the recognition of 16QAM, 32QAM and 64QAM. This method employs higher-order aceumulation to describe the signal features, and uses the adjacency graph to depict the intrinsic geometrieal properties of the features, which can better charaeterize the similarity of the data; then a nearest neighbor classifier is used to achieve classification. The experimental results show that the proposed algorithm has better recognition performance, especially in the event of low signal to noise ratio (SNR)
分 类 号:TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.10.46