检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学信息科学技术学院,合肥230027
出 处:《模式识别与人工智能》2014年第4期294-299,共6页Pattern Recognition and Artificial Intelligence
基 金:国家973计划项目(No.2010CB327906)资助
摘 要:稀疏表示人脸识别算法在字典构造时易丢失大量分类信息且L1范数最小化计算量较大.针对此问题,提出一种基于Fisher准则字典学习和最小二乘法的压缩感知人脸识别算法.该算法首先由Fisher判别准则对训练样本训练得到字典;然后通过最小二乘法解L2范数最小化问题,得到人脸在该字典上的编码系数;最后结合各类别重构误差和编码系数对人脸分类.在公共人脸库上的测试结果表明,文中算法有较高的识别率,并有效提高识别速度.Sparse representation based classification ( SRC ) algorithm loses much discriminative information hidden in the training samples when constructing dictionary and the L1-minimization approach to solving the coding coefficient is computationally expensive. Aiming at these problems, a face recognition algorithm via compressive sensing based on Fisher discrimination dictionary learning and least square method is proposed. The training samples are trained by Fisher discrimination criterion and thus the structured dictionary is acquired. Then, the coding coefficients are obtained by solving L2-minimization problem through regularized least square method. Finally, the face is identified through the coding coefficient and reconstruction error. The experimental results clearly show that the proposed method has a better accuracy rate and improves the recognition speed compared with the existing sparse representation classification methods.
关 键 词:FISHER判别准则 压缩感知 人脸识别 最小二乘法
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3