基于神经网络的医学图像分割研究(英文)  被引量:1

Medical image segmentation based on neural network

在线阅读下载全文

作  者:魏飞[1] 刘守鹏[1] 

机构地区:[1]滨州医学院卫生管理学院,山东烟台264003

出  处:《安徽大学学报(自然科学版)》2014年第2期33-39,共7页Journal of Anhui University(Natural Science Edition)

基  金:Supported by the National Natural Science Foundation of China(11001117)

摘  要:为了更好地分割医学图像,对传统的神经网络进行改进,对分割后的图像区域特征进行约减,以降低特征向量维数,同时抽取出规则,根据这些规则构造神经网络隐含层的神经元个数,确定神经网络的初始拓扑结构.然后用逆推学习算法迭代,得到最终的决策结果,即实现图像的分割.实验证明,该方法大大缩短了实验时间,提高了精度,并且得到优于常规的分割图像,满足图像处理的事实性要求.In order to segment medical images more efficiently,the research improved the traditional neural network,subtracted the image regional characteristics after segmentation,so as to lower feature vector dimension.This study was based on the extracted rules the number of neurons in hidden layer neural network neurons,and determined the initial neural network topology.A reverse iterative learning algorithm was utilized in this study; the final decision results were achieved and the image segmentation was realized.The experiments showed that this method greatly reduced the experiment time and improved the accuracy.The segmentation image was superior to conventional image segmentation and satisfied the factual requirements of the medical image processing.

关 键 词:神经网络 医学图像分割 逆推学习 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象