检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中北大学机械工程与自动化学院,山西太原030051
出 处:《机械设计》2014年第4期4-10,共7页Journal of Machine Design
基 金:国家自然科学基金资助项目(51175482);山西省国际合作资助项目(2012081030)
摘 要:为解决深孔加工中表面粗糙度在线检测困难这一问题,提出一种基于BP神经网络的表面粗糙度在线辨识方法,并以BTA钻削为例,建立表面粗糙度BP神经网络在线辨识模型,并将其引入钻削加工领域。该模型能方便地预测钻削加工参数对加工表面粗糙度的影响,有助于准确认识已加工表面质量随切削参数的变化规律,为切削参数的优选和表面粗糙度的控制提供了依据。实验和仿真结果表明,基于BP神经网络模型能够很好地预测表面粗糙度,对提高加工表面粗糙度具有一定的指导意义。In order to conquer the difficulty of on-fine surface roughness measuring, the surface roughness identification method based on BP networks is put forward. As an example, the identifi- cation model of BTA drilling is built and introduced into the field of drilling. The model conveniently predicts the effects of drillingparameters on surface roughness of machined surface, which con- tributes to accurately understand the variation law of quality of ma- chined surface following drilling parameters and provides the foun- dation for properly selecting cutting parameters and controlling surface quality. The simulation and experimental results show that BP neural network can well predict the surface roughness and have a certain guiding significance to improve the surface roughness.
分 类 号:TH161[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249