检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]黄河科技学院现代教育技术中心,郑州450006
出 处:《煤炭技术》2014年第3期19-21,共3页Coal Technology
摘 要:有效控制煤矿井下瓦斯体积分数是保证财产和人员安全的重要前提。现阶段各大煤矿企业采用的瓦斯体积分数测量方法存在一定缺陷,未能实现动态性和实时性,导致瓦斯爆炸事故时有发生。为了科学、准确地控制煤层瓦斯含量,深入分析了影响瓦斯体积分数的因素,提出了基于BP神经网络结构的预测模型方案。为了优化预测模型,从引入陡度因子、自适应调整学习速率、改进误差函数等方面入手,不断提高预测精度,继而采取网络训练和仿真的模型来验证其准确度,为煤矿安全生产提供有效借鉴。The effective control of coal mine gas volume fraction is an important prerequisite to ensure the property and personal safety. There are some defects in the gas volume fraction measurement methods of coal enterprises at the present stage, it is impossible to realize dynamic and real-time, resulting in gas explosion accidents which have occurred. In order to scientifically and accurately control the coal seam gas content, the factors of influencing the gas volume fraction are analyzed indepth, and the gas volume fraction prediction model is put forward. In order to optimize the prediction model, starting from the introduction of steepness factor, adaptive learning rate, improvement of the error function and so on, the prediction accuracy is continuously improved, and the network training and simulation model are taken to verify its accuracy, the effective reference is provided for coal mine safety production.
分 类 号:TD712[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104