检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张子龙[1] 薛静[1] 乔鸿海[1] 智永锋[1]
机构地区:[1]西北工业大学自动化学院,陕西西安710072
出 处:《西北工业大学学报》2014年第2期297-302,共6页Journal of Northwestern Polytechnical University
基 金:国家自然科学基金(61201321);西北工业大学研究生创业种子基金(Z2014153)资助
摘 要:针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(features from accelerated segment test)特征点检测、SURF特征向量提取以及最近邻查询方法来进行特征点的匹配;通过计算比较待检索车辆图像与数据库车辆图像的相似度,算法完成图像筛选并反馈检索结果。实验结果表明:针对交通监控视频中待检索车辆,该方法能够较为准确地进行检索并反馈结果。To overcome the problem low accuracy and discrimination of traditional vehicle retrieval methods, a new vehicle video retrieval method based on improved SURF algorithm is proposed. On the basis of vehicle video key frame extraction, the improved SURF algorithm is used for extracting and matching of vehicle image features, inclu- ding improved FAST angular point algorithm to extract the image feature points, including SURF algorithm to extract the image feature vector and including nearest neighbor query algorithm to get matching points; through cal- culating and comparing vehicle images to be retrieved and the database of vehicle images in similarity, image filte- ring is completed and the retrieval results are output. The experimental results and their analysis show preliminarily that this method not only can detect the video vehicle, but also can feedback retrieval results fairly accurately.
关 键 词:车辆视频检索 改进SURF算法 改进FAST特征点 特征点匹配 相似度
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145