检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]首都师范大学,北京100048 [2]北京理工大学网络搜索挖掘与安全实验室,北京100081
出 处:《科学技术与工程》2014年第12期227-231,共5页Science Technology and Engineering
基 金:国家自然科学基金(61272362);国家973重点基础研究发展计划项目(2013CB329606)资助
摘 要:随着微博快速崛起,每天数以千万的人通过微博分享自己对各类话题的观点与情感,如何自动感知微博社区对特定话题的观点倾向性,已经成为中文微博计算亟待解决的问题。由于微博内容短小且不规范,传统的情感分析效率低下且效果很难满足实际需求。现提出一种将情感词典分类的方法进行实验研究,针对腾讯微博20个话题约17 500条微博32 000个句子的数据进行实验,实验结果表明提出的情感词典分类方法效果很好。With the rapid development of microblogs, millions of users share their opinions and sentiments on different topics by mierobloging every day. Automatically analyzing users' sentimental trends and determining the tendency of the whole microblog community under certain topic, have been the basic urgent scientific problem in the context of microblog computation. Since microblog contents are normally short and irregular, traditional senti- ment analysis algorithms cannot work well and meet the practical requirementsduo to its essential defects and ineffi- ciency. Microblogs topic opinion analysis is conducted by constrcuting a method of sentiment dictionary classification. Experiments on 32 000 sentences in 17 500 microblogs from 20 topics about collected from Tencent Weibo shows that the effectiveness of our proposed method.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3