检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军航空工程学院电子信息工程系,烟台264001
出 处:《电子与信息学报》2014年第5期1075-1081,共7页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61179016)资助课题
摘 要:两步加权最小二乘方法(two-stage WLS)是求解TDOA/FDOA无源定位问题的经典线性方法,但也存在着定位偏差和均方误差对测量噪声的适应能力较差的缺点。该文根据TDOA/FDOA的伪线性定位方程组特点,将其建立为一种带约束条件的约束总体最小二乘(CTLS)模型,并采用拉格朗日乘子法求解带约束条件的CTLS问题,建立了几种最小二乘类定位方法的统一解,从而将约束加权最小二乘(CWLS)定位解和约束最小二乘(CLS)定位解变为该文CTLS定位解的特例。仿真表明,该文方法比两步加权最小二乘方法具有更低的均方误差,并能够有效减小定位偏差,因而具有更好的测量噪声适应能力。The two-stage Weighted Least Squares (WLS) method is a well-known linear approach in Time-Difference-Of-Arrival (TDOA) and Frequency-Difference-Of-Arrival (FDOA) passive localization. But this method can only attain the CRLB in a modest noise environment and the bias of the localization result is significant for strong noise. This paper discusses a Constrained Total Least Square (CTLS) solution to the pseudo linear equations with two constrains for TDOA/FDOA localization. A unified expression for several LS solutions is derived based on Lagrange multiplier. The Constrained Weighted Least Square (CWLS) method and Constrained Least Square (CLS) localization method reduce to the special cases of the localization solution. The simulation results show that the proposed method has lower Mean Square Error (MSE) and lower bias compared with the two-stage WLS method, and it is more robust to noise.
关 键 词:无源定位 到达时差 到达频差 最小二乘 偏差 均方误差
分 类 号:TN971[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28