不同道路线形下驾驶人认知分散状态监测  被引量:5

Driver cognitive distraction detection in different road lines

在线阅读下载全文

作  者:金立生[1] 牛清宁[1] 刘景华[2] 秦彦光 吕欢欢[1] 

机构地区:[1]吉林大学交通学院,长春130022 [2]郑州宇通客车股份有限公司,郑州450000

出  处:《吉林大学学报(工学版)》2014年第3期642-647,共6页Journal of Jilin University:Engineering and Technology Edition

基  金:教育部新世纪优秀人才基金项目(NCET-10-0435);高等学校博士学科点专项科研基金项目(20110061110036);吉林省人才开发基金项目(801121100417);吉林省科技厅重大项目(20116017)

摘  要:通过驾驶模拟实验采集了不同驾驶人在不同道路线形下的驾驶行为参数,通过对参数的统计分析,确立了表征正常驾驶和认知分散状态下驾驶的特征参数组。利用提取的特征参数组作为支持向量机模型输入,建立了不同驾驶人在不同道路线形下的认知分散状态监测模型。实验结果表明,在不同道路线形下分别进行监测的准确度(直道88.58%,弯道81.25%)高于采用同一模型不区分道路线形直接进行监测的准确度74.17%。研究同时表明个人驾驶习惯对驾驶人意识监测结果有重要影响。Through driving simulator experiments, the original performance data of different drivers on different road lines were collected, from which the characteristic parameters were extracted using statistical analysis. Then cognitive distraction detection models were developed based on the support vector machine in view of different road lines. The characteristic parameters were used as the input of the models. The experiment results show that, using the proposed models, the detection accuracy is 88.58% for straight road, and 81.25% for curve road. The performance of the proposed models is better than that of the universal model, using which the detection accuracy is only 74. 17%. Experiment results also show that the cognitive distraction detection is also influenced by the driving styles of the individual drivers.

关 键 词:交通运输安全工程 认知分散 驾驶行为 支持向量机 

分 类 号:U492.8[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象