改进的最小交叉Tsallis熵的小目标声呐图像分割  被引量:4

Improved minimum symmetric Tsallis cross entropy for segmentation of a sonar image from a small underwater target

在线阅读下载全文

作  者:张金果[1] 郭海涛[2,3] 吴君鹏[3] 李依桐[4] 

机构地区:[1]东北电力大学输变电技术学院,吉林吉林132012 [2]内蒙古大学电子信息工程学院,呼和浩特010021 [3]东北电力大学电气工程学院,吉林吉林132012 [4]北京邮电大学计算机学院,北京100876

出  处:《吉林大学学报(工学版)》2014年第3期834-839,共6页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金项目(41076060);吉林省自然科学基金项目(20130101056JC);内蒙古大学高层次人才引进科研启动基金项目(135123)

摘  要:利用一维属性直方图改进交叉Tsallis熵,在此基础上提出了一种基于一维属性直方图的对称最小交叉Tsallis熵水下小目标声呐图像分割方法。该方法的主要步骤是:①抑制水下小目标声呐图像的散斑噪声;②根据图像像素的灰度值和该像素邻域的灰度平均值的大小建立属性集,在属性集上建立与该属性集约束对应的一维属性直方图;③根据一维属性直方图的对称交叉最小Tsallis熵法确定灰度二值化阈值;④对二值化后的图像去除孤立区。实验结果表明:该方法适用于直方图为复杂非双峰形状的水下小目标声呐图像,而且与现有的属性直方图上的一维最大熵阈值化法比较,具有更强的抗噪能力。A segmentation method on the sonar image of a small underwater target is proposed. In this method, the gray-level threshold for segmentation is acquired via the minimum symmetric Tsallis cross entropy that is based on one-dimensional bound histogram. In this method, first, the speckle noise of the sonar image is suppressed. Second, the bound set is constructed according to the restriction in the gray-level values of both pixels and their neighborhood averages, and the one- dimensional bound histogram corresponding to that bound set is established. Third, the gray-level threshold for segmentation is determined according to the minimum symmetric Tsallis cross entropy based on the one-dimensional bound histogram. Finally, the isolated areas in the threshold image are removed. Experimental results show that the proposed method is well adequate for the images with a nonideal bimodal histogram; it has better antinoise performance than the existing methods based on the entropy of the one-dimensional bound histogram.

关 键 词:图像处理技术 声呐图像 图像分割 属性直方图  阈值 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象