机构地区:[1]Forestry and Fruit Tree Research Institute, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences (SAAS) [2]Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Biotechnology [3]Department of Molecular Biology and Biochemistry, Universidad de Málaga
出 处:《Journal of Integrative Plant Biology》2014年第4期350-363,共14页植物学报(英文版)
基 金:the Science and Technology Commission of Shanghai Municipality (Shanghai Rising-Star Program (09QA1405300) to K. D., Key Program (12391901400) to Q. H. G.);Shanghai Academy of Agricultural Sciences (S & T Development Program (2012(13)) to K. D.). V. V. was funded by MICINN (Spain), grant no. BIO2010-15630
摘 要:Auxin has been regarded as the main signal molecule coordinating the growth and ripening of fruits in strawberry, the reference genomic system for Rosaceae. The mechanisms regulating auxin biosynthesis in strawberry are largely elusive. Recently, we demonstrated that two YUCCA genes are involved in flower and fruit development in cultivated strawberry. Here, we show that the woodland strawberry (Fragaria vesca L.) genome harbors nine loci for YUCCA genes and eight of them encode functional proteins. Transcription pattern in different plant organs was different for all eight FvYUCs. Functionality of the FvYUC6 gene was studied in transgenic strawberry over- expressing FvYUC6, which showed typical high-auxin pheno- types. Overexpression of FvYUC6 also delayed flowering and led to complete male sterility in F. vesta. Additionally, specific repression of FvYUC6 expression by RNA interference signifi- cantly inhibited vegetative growth and reduced plant fertility. The development of leaves, roots, flowers, and fruits was greatly affected in FvYUC6-repressed plants. Expression of a subset of auxin-responsive genes was well correlated with the changes of FvYUC6 transcript levels and free indole-3-acetic acid levels in transgenic strawberry. These observations are consistent with an important role of FvYUC6 in auxin synthesis, and support a main role of the gene product in vegetative and reproductive development in woodland strawberry.Auxin has been regarded as the main signal molecule coordinating the growth and ripening of fruits in strawberry, the reference genomic system for Rosaceae. The mechanisms regulating auxin biosynthesis in strawberry are largely elusive. Recently, we demonstrated that two YUCCA genes are involved in flower and fruit development in cultivated strawberry. Here, we show that the woodland strawberry (Fragaria vesca L.) genome harbors nine loci for YUCCA genes and eight of them encode functional proteins. Transcription pattern in different plant organs was different for all eight FvYUCs. Functionality of the FvYUC6 gene was studied in transgenic strawberry over- expressing FvYUC6, which showed typical high-auxin pheno- types. Overexpression of FvYUC6 also delayed flowering and led to complete male sterility in F. vesta. Additionally, specific repression of FvYUC6 expression by RNA interference signifi- cantly inhibited vegetative growth and reduced plant fertility. The development of leaves, roots, flowers, and fruits was greatly affected in FvYUC6-repressed plants. Expression of a subset of auxin-responsive genes was well correlated with the changes of FvYUC6 transcript levels and free indole-3-acetic acid levels in transgenic strawberry. These observations are consistent with an important role of FvYUC6 in auxin synthesis, and support a main role of the gene product in vegetative and reproductive development in woodland strawberry.
关 键 词:Auxin biosynthesis Fragaria vesta plant development RNAINTERFERENCE YUCCA genes
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...