基于小世界网络的Hopfield联想记忆模型  被引量:1

Research on the hopfield associative memory model based on the small-world network

在线阅读下载全文

作  者:张瑞成[1] 胡绪磊 

机构地区:[1]河北联合大学电气工程学院,河北唐山063009

出  处:《智能系统学报》2014年第2期214-218,共5页CAAI Transactions on Intelligent Systems

基  金:国家自然科学基金资助项目(61040012)

摘  要:针对基于Watts-Strogatz小世界网络的联想记忆(WSAM)模型中存在的信息丢失和产生孤立节点的问题,引入Newman-Watts小世界网络,提出了基于NW小世界网络的联想记忆(NWAM)模型,并给出生成方法以及相应的理论算法。与WSAM相比,该模型节点连接数有少量增加,而网络性能却得到极大的改善。对比实验结果表明,在重连概率和全局连接度相同的情况下,NWAM对加噪模式回想的能力要高于WSAM;在噪音干扰不断增加的情况下,NWAM抗噪联想性能始终优于WSAM。最终,利用NWAM模型对加入噪音的交通图像进行识别时,获得了比WSAM更好的识别效果,表现出良好的容错性和对含噪信息的鲁棒处理能力。In view of the various problems associated with information loss and isolated points in the WSAM (associ- ative memory network based on the Watts-Strogatz small-world neural network), the Newman-Watts small-world network has been introduced, and a model of the NW AM ( associative memory based on the Newman-Watts small- world neural network) is presented in this paper. This paper analyzes the NWAM and details the generation meth- ods and algorithm. The network performance has been greatly improved by increasing the number of node connec- tions. The experimental results show that under the same probability and connection degree, the NWAM delivers better performance than the WSAM. With the increase of noise interference, the noise immunity performance of the NWAM is always better than the WSAM. Finally, The NWAM is used in the traffic image recognition and the re- suits show that it is more robust and has high fault tolerance ability when compared with the WSAM.

关 键 词:NW小世界网络 联想记忆 神经网络 图像识别 容错性 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象