检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李小昱[1] 陶海龙[1] 高海龙[1] 李鹏[1] 黄涛[1] 孙金风[2]
机构地区:[1]华中农业大学工学院,武汉430070 [2]湖北工业大学机械工程学院,武汉430068
出 处:《农业机械学报》2014年第5期191-196,共6页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家自然科学基金资助项目(61275156);湖北省自然科学基金资助项目(2011CDA033);中央高校基本科研业务费专项基金资助项目(0900205116)
摘 要:针对反射机器视觉技术若同时检测马铃薯内外部缺陷存在检测精度不高的问题,提出一种基于透射机器视觉技术的马铃薯内外部缺陷无损检测方法。通过对获取的马铃薯透射和反射图像预处理方法的比较研究,确定上山法结合区域生长法为马铃薯透射和反射图像特征的最优分割方法;采用偏最小二乘-支持向量机分别建立了透射和反射图像的马铃薯缺陷识别模型并进行了比较。在对马铃薯内部缺陷进行检测时,透射和反射图像所建模型的判别正确率分别为96.30%、59.26%;在对马铃薯外部缺陷进行检测时,透射和反射图像所建模型的判别正确率分别为94.20%、89.86%;在对马铃薯内外部缺陷进行同时检测时,透射和反射图像所建模型的判别正确率分别为95.83%、81.25%。研究结果表明,无论是对马铃薯内部或外部缺陷单独进行检测,还是对内外部缺陷同时进行检测,透射方法均比反射方法精度更高。With the aim to solve the accurate rate short of reflection imaging technology to simultaneously detecting internal and external defects of potatoes, a nondestructive test technology based on transmission imaging and machine vision technology was proposed. It is concluded that the combination of hill climbing method and region growing method is the optimal image segmentation method for transmission and reflection images of potato by studying image preprocessing methods. Partial least squares-support vector machine (PLS-SVM) method was employed to establish the potato defects recognition model for transmission and reflection images of potato. In the potato internal defects detection, the classifying correct rates of the transmission and the reflection imaging technology are 96.30% and 59.26% respectively; in the potato external defects detection, the classifying correct rates are 94.20% and 89.86% respectively; in the simultaneous potato internal and external defects detection, the classifying correct rates are 95.83% and 81.25% respectively. The research results show that the transmission method is better than the reflection method in detecting potato internal and external defects alone, or in detecting the internal and external defects simultaneously.
分 类 号:S532[农业科学—作物学] TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.42.128