检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学计算机科学与技术学院,江苏南京210094 [2]南京大学电子科学与工程学院,江苏南京210093
出 处:《计算机应用与软件》2014年第4期175-177,共3页Computer Applications and Software
摘 要:随着人脸识别技术的不断发展,单样本人脸识别已成为当今的一个热点。针对单样本人脸识别问题,提出一种基于通用框架学习的人脸识别方法。以大量的通用样本与各个单样本按一定比例叠加的方式,增加每个类的训练样本总数,有效地运用FLDA方法进行特征抽取,将所有样本投影到特征子空间,再利用最近邻方法完成人脸识别,一定程度上减轻了人脸的表情、姿态、光照等因素对识别效果的影响,提高了识别率。该方法的有效性分别在ORL及Yale两大人脸库上得到了验证。With the constant development of face recognition technology,single sample face recognition has become today's focus. In light of this issue,in the paper we present a face recognition method which is based on general frame learning. The method increases the total number of training samples of every class in the way of superimposing each single sample with a great deal of general samples in certain proportion,effectively utilises FLDA method to extract the features,and maps all the samples onto feature subspace,then makes use of the nearest neighbouring method to complete the face recognition,this mitigates the impacts of those factors including facial expression,attitude,illumination,etc. on recognition effect and raises recognition rate. The effectiveness of the proposed method has been verified on two major face libraries of ORL and Yale respectively.
关 键 词:人脸识别 单训练样本 通用框架学习 FISHER线性判别分析
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147