检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科学技术大学电子科学与工程学院,长沙410073
出 处:《信号处理》2014年第5期561-568,共8页Journal of Signal Processing
基 金:国家自然科学基金项目(61303186);CAST创新基金项目(CAST201216)
摘 要:基于稀疏编码的高光谱图像处理算法能够挖掘高光谱高维数据空间中潜在的数据相关性,能自然地贴近光谱信号的本质特征。本文提出基于局部非负稀疏编码的高光谱目标检测算法。与经典稀疏编码模型相比,非负稀疏编码对编码系数进行非负约束,一方面使得线性编码具有明确的物理解释,另一方面增强了系数的可分性与稳健性。算法首先通过双窗口设计构造局部动态字典,然后利用目标和背景在动态字典上编码的稀疏性差异进行阈值分割最后通过统计判决实现目标检测。仿真数据以及真实数据实验结果证明了算法的有效性。Sparse representation based hyperspectral image processing methods can excavate potential relationship in high-dimensional hyperspectral data and reveal the essential characteristic of spectral signal. In this paper a novel hyper- spectral image target detection algorithm based on local non-negative sparse coding is presented. Compared with classical sparse representation methods, the linear coding coefficients are enforced non-negative. On one side the linear coding process has tangible physical interpretation. On the other side the coding coefficients are proved more discriminative and ro- bust. The locally dynamic dictionary is first constructed with atoms which are produced by a sliding dual window strategy. Then non-negative coefficients of each pixel are calculated with the dynamic dictionary. The discrimination between targets and background is based on the sparsity of the coefficients. We carried extensive experiments on both simulated and real data to verify the effectiveness of the proposed method.
关 键 词:高光谱目标检测 非负稀疏编码 滑动双窗口 动态字典
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124