检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]梧州学院,广西梧州543002 [2]广西大学计算机与电子信息学院,广西南宁530004
出 处:《信号处理》2014年第5期569-574,共6页Journal of Signal Processing
基 金:国家自然科学基金(61062014)
摘 要:针对局部模糊图像的模糊区域检测分割问题,提出了一种改进的基于奇异值分解和图像抠图的模糊区域自动检测分割算法。首先,采用分块的方法对局部模糊图像进行再次模糊,通过比较前后图像块的奇异值特征变化差异将其标识模糊块或清晰块以得到一个标识图。其次,根据标识图,结合图像抠图技术对图像的局部模糊区域进行自动提取。实验结果表明,该方法可以较为精确地检测并分割出局部模糊图像中的模糊区域。Partially blurred images caused by motion or out of focus are common in life, we need to detect and segment blurred image region when doing some multimedia analyzing tasks. As for the problem of blurred region detection and seg- mentation of partially blurred images, we propose a method based on singular value decomposition and image matting is presented in this paper. Making use of the different changes of image blurred regions and clear regions under a low- pass fihering, partially blurred image is firstly partitioned into patches and each image patch is re-blurred by a Gaussi- an function, then a trimap is got after comparing the singular value feature difference of the patches to distinguish blurred regions and clear regions. Secondly, a image matting technique is combined with the trimap to automatically segment blurred regions from the partially blurred images. Experiments show that this method can detect and segment the blurred regions accurately.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.153.96