检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马际华[1]
机构地区:[1]武汉大学数学科学学院/非线性科学中心,湖北武汉430072
出 处:《武汉大学学报(自然科学版)》2001年第1期6-8,共3页Journal of Wuhan University(Natural Science Edition)
基 金:国家自然科学基金!资助项目 (2 0 2 0 0 0 1 33)
摘 要:给定一个概率向量P =(p0 ,p1,… ,pm -1) (m≥ 2 ) ,贝西科维奇集B由单位区间中那些在m 进制展开 ,式中j(0≤j≤m - 1)出现的频率为pj((0≤j≤m - 1) )的点组成 ,已经知道它在任何量纲下的豪斯道夫测度非零即无穷 本文运用测度的微扰法证明了西科维奇集的豪斯道夫测度为无穷大 .更进一步 ,证明了西科维奇集在量纲h(t) =tsexp{ -c |logt|log|logt| }之下的豪斯道夫测度为无穷大 .For a fixed probability vector P=(p_0,p_1,…,p_ m-1)(m≥2),The Besicovitch set B is the set of points in the unit interval which contain j(0≤j≤m-1) in their madic expansions in the propotion p_j((0≤j≤m-1)); it is known that B has Hausodrff dimension-∑p_jlogp_jlogm, and its Hausdorff measures(under any gauge) are either zero or infinity. A kind of peturbation measures are employed to prove that the Besicovitch set has infinite Hausdorff measure in the dimension.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229